Favicon Vikidia.png
¡Vikidia te necesita!Face-wink.svg
Corazón.svg

Actualmente tenemos 6475 artículos. ¡Anímate! Face-smile.svg a crear los artículos solicitados

Estadística

De Vikidia
Ir a la navegación Ir a la búsqueda

La estadística es la rama de las matemáticas que estudia la variabilidad, recolección, organización, análisis, interpretación y presentación de los datos.

Síntesis[editar · editar código]

La estadística es una ciencia formal, con un conocimiento propio, dinámico y en continuo desarrollo obtenido a través del método científico formal.

En ocasiones, las ciencias fácticas necesitan utilizar técnicas estadísticas durante su proceso de investigación factual, con el fin de obtener nuevos conocimientos basados en la experimentación y en la observación. En estos casos, la aplicación de la estadística permite el análisis de datos provenientes de una muestra representativa, que busca explicar las correlaciones y dependencias de un fenómeno físico o natural, de ocurrencia en forma aleatoria o condicional.

Uso[editar · editar código]

Hoy el uso de la estadística se ha extendido más allá de sus orígenes como un servicio al Estado o al gobierno. Personas y organizaciones usan la estadística para entender datos y tomar decisiones en ciencias naturales y sociales, medicina, negocios y otras áreas. La estadística es una sub-área de las matemáticas cuya aplicación en el ámbito de las ciencias fácticas es útil para el avance del conocimiento científico factual, considerándose como una ciencia formal «aliada» de la ciencia fáctica.

Muchas universidades tienen departamentos académicos de matemáticas (con especialización en estadística) o de estadística separadamente. La estadística se enseña en departamentos tan diversos como psicología, sociología, educación y salud pública.

Regresión lineal – gráficos de dispersión en estadística.

Al aplicar la estadística a un problema científico, industrial o social, se comienza con un proceso o población a ser estudiado. Esta puede ser la población de un país, de granos cristalizados en una roca o de bienes manufacturados por una fábrica en particular durante un periodo dado. También podría ser un proceso observado en varios instantes y los datos recogidos de esta manera constituyen una serie de tiempo.

Por razones prácticas, en lugar de compilar datos de una población entera, usualmente se estudia un subconjunto seleccionado de la población, llamado muestra. Datos acerca de la muestra son recogidos de manera observacional o experimental. Los datos son entonces analizados estadísticamente lo cual sigue dos propósitos: descripción e inferencia.

El concepto de correlación es particularmente valioso. Análisis estadísticos de un conjunto de datos puede revelar que dos variables (esto es, dos propiedades de la población bajo consideración) tienden a variar conjuntamente, como si hubiera una conexión entre ellas. Por ejemplo, un estudio del ingreso anual y la edad de muerte podría resultar en que personas pobres tienden a tener vidas más cortas que personas de mayor ingreso. Las dos variables se dice que están correlacionadas. Sin embargo, no se puede inferir inmediatamente la existencia de una relación de causalidad entre las dos variables. El fenómeno correlacionado podría ser la causa de una tercera, previamente no considerada, llamada variable confusora.

Si la muestra es representativa de la población, inferencias y conclusiones hechas en la muestra pueden ser extendidas a la población completa. Un problema mayor es el de determinar cuán representativa es la muestra extraída. La estadística ofrece medidas para estimar y corregir por aleatoriedad en la muestra y en el proceso de recolección de los datos, así como métodos para diseñar experimentos robustos como primera medida, ver diseño experimental.

El concepto matemático fundamental empleado para entender la aleatoriedad es el de probabilidad. La estadística matemática (también llamada teoría estadística) es la rama de las matemáticas aplicadas que usa la teoría de probabilidades y el análisis matemático para examinar las bases teóricas de la estadística.

El uso de cualquier método estadístico es válido solo cuando el sistema o población bajo consideración satisface los supuestos matemáticos del método. El mal uso de la estadística puede producir serios errores en la descripción e interpretación, lo cual podría llegar a afectar políticas sociales, la práctica médica y la calidad de estructuras tales como puentes y plantas de reacción nuclear.

Incluso cuando la estadística es correctamente aplicada, los resultados pueden ser difíciles de interpretar por un inexperto. Por ejemplo, el significado estadístico de una tendencia en los datos, que mide el grado al cual la tendencia puede ser causada por una variación aleatoria en la muestra, puede no estar de acuerdo con el sentido intuitivo. El conjunto de habilidades estadísticas básicas (y el escepticismo) que una persona necesita para manejar información en el día a día se refiere como «cultura estadística».[1]

Referencias[editar · editar código]